Modeling out-of-plane actuation in thin-film nematic polymer networks: From chiral ribbons to auto-origami boxes via twist and topology

نویسندگان

  • Vianney Gimenez-Pinto
  • Fangfu Ye
  • Badel Mbanga
  • Jonathan V. Selinger
  • Robin L. B. Selinger
چکیده

Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Director Structures in a Chiral Nematic Slab: Threshold Field and Pitch Variations

Abstract The liquid crystal director distribution is determined for a confined chiral nematic slab. The molecular director distribution of the field-controlled chiral nematic slab is directly calculated. The director profiles for the tilt and the twist angles, under different applied fields, are calculated in the slab with weak boundary conditions. Then, the dependence of the threshold field on...

متن کامل

Modeling Defects, Shape Evolution, and Programmed Auto-Origami in Liquid Crystal Elastomers

Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape-change trajectory is encoded in the material’s nematic director field. Using three-dimensional non-linear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce forma...

متن کامل

Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot

The need to support the two most basic functions [three-dimensional (3D)-shaped support and actuation] independently for a typical robot demands that at least two components should be used in its construction. Therefore, component assembly is unavoidable despite the ultimate dream of creating assembly-free robots. We devise a strategy that uses a programmable crystalline shape memory polymer wi...

متن کامل

Shape selection of twist-nematic-elastomer ribbons.

How microscopic chirality is reflected in macroscopic scale to form various chiral shapes, such as straight helicoids and spiral ribbons, and how the degree of macroscopic chirality can be controlled are a focus of studies on the shape formation of many biomaterials and supramolecular systems. This article investigates both experimentally and theoretically how the chiral arrangement of liquid c...

متن کامل

Thermal deformation of imprinted twist nematic elastomers

A nematic elastomer film with a 90 o twist orientation between the top and bottom surfaces is prepared by chiral imprinting methods. The reactive achiral nematic monomers and crosslinkers are photopolymerized in the presence of a controlled amount of unreactive chiral dopant. The elastomer films possess a 90 o twist orientation even after the removal of the chiral dopant. The films exhibit an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017